Menoufiya University
Department: Civil Eng.
Year: $\quad 3^{\text {rd }}$ Civil Date 6/6/2015
Subject/Code: design of irrigation structures (1)/CVE321
Time Allowed: 3 hours

Remarks: No. of pages: $2 \quad$ No. of questions: 4
Allowed Tables and Charts: (SHAKER EL BEHAIRY Design Handbook\& Concrete Tables)

Answer all the following Questions [70 Marks] Question (1) [20 Marks]

- Discuss the uses of Culvert for Runoff Management.
[2 Marks]
- What are the main functions of culvert?
- What is the required information for designing culvert?
- Discuss The main basis of selecting of material type of hydraulic structures
- How the shape of hydraulic structures could be chosen?
- Draw with discussion the entrance arrangements of syphon structure.
- Differentiate between skew and right crossing.
- What are the main factors used for selecting of waterway crossing up works type?
- Discuss "El-Salam Syphon project under Suez Canal is one of the major projects in Egypt"
- Explain briefly, what are the super structures and the substructures of the bridge.

Ouestion (2) [15 Marks]

Discuss without calculations the following shapes:
1- A footpath bridge is constructed on a canal
[4Marks]

2- The modes of failure of retaining wall[4Marks]

3- It is required to calculate volume of reinforced concrete of the concrete holding down bolt of a steel hope of circular aqueduct in case of using two steel hope each one have two holding down bolts with 25 mm diameter. The aqueduct diameter is 3.5 m and 16 m length between the two supports. The centerline of the aqueduct lays down the canal water level by 30 cm .
[7Marks]

Question (3) [15 Marks]

In a coastal area, it is required to construct a tourist sidewalk near the sea. The proposed sidewalk is as shown in the figure. It is required to design all elements of the structure. Sidewalk's width $=1.50 \mathrm{~m}$ Live load on side walk $=1.0 \mathrm{t} / \mathrm{m}^{2}$, and the equivalent live load on the road $=3.33 \mathrm{t} / \mathrm{m}^{2} \gamma_{\text {soil }}=1.80 \mathrm{t} / \mathrm{m}^{3}, \varnothing=30^{\circ}$ Soil bearing capacity $=1.50 \mathrm{~kg} / \mathrm{cm}^{2}$

Question (4) [20 Marks]

A roadway crosses a canal at right angle; the canal is proposed to pass through a culvert under the embankment of the road. the culvert is feeding a claimed area of 20.000 fed. With maximum water duty $68 \mathrm{~m}^{3} / \mathrm{f} /$ day.

Canal data:

Bed level $=(2.75)$, Bed width $=8.0 \mathrm{~m}$, Side slopes 3:2 and 2:1 Bank width $=8.0 \mathrm{~m}$ Berm level $=$ (5.50), Bank level $=(6.70)$, H.W.L $=5.00$

Road data :

Road width $=12.0 \mathrm{~m} \quad, \quad$ Side Slope $=2: 1, \quad$ Land level $=(5.50)$ If the heading up not exceeds 20 cm , and the moving load is 60 ton lorry $. \gamma_{\text {Soil }}=1.65 \mathrm{tlm}^{3}, \Phi=25^{\circ}$

Lt's required to:

1. Complete hydraulic design of culvert.
2.
3. Quick structural design of culvert.
4. Draw plan (H.E.R), Elevation, and side view.

Question no.	1	$2-1$	$2-2$	$2-3$	$3-\mathrm{a}$	$4-1$	$4-2$
ILO's	A.4,A.11,B3 A.6, A.13, A.15, B9 and B14	A.6, A.13and A.15.	A.6, A.13, A.15, B9 and B14	A.15 and B14	A.15 and B14	A.15, B.3, C.10 and B14	A.14 and B14, C15
Question no.	$4-3$						
ILO's	A.11 and B14						

